Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1861(10): 183029, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351058

RESUMO

The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites. Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipídeos de Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ânions/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Ativação do Canal Iônico , Cinética , Bicamadas Lipídicas/química , Modelos Moleculares , Mutação/genética , Técnicas de Patch-Clamp , Fosfatidilgliceróis/química , Fosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Ligação Proteica , Streptomyces lividans/química , Streptomyces lividans/metabolismo
2.
Sci Rep ; 9(1): 6215, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996281

RESUMO

Potassium channels selectivity filter (SF) conformation is modulated by several factors, including ion-protein and protein-protein interactions. Here, we investigate the SF dynamics of a single Trp mutant of the potassium channel KcsA (W67) using polarized time-resolved fluorescence measurements. For the first time, an analytical framework is reported to analyze the homo-Förster resonance energy transfer (homo-FRET) within a symmetric tetrameric protein with a square geometry. We found that in the closed state (pH 7), the W67-W67 intersubunit distances become shorter as the average ion occupancy of the SF increases according to cation type and concentration. The hypothesis that the inactivated SF at pH 4 is structurally similar to its collapsed state, detected at low K+, pH 7, was ruled out, emphasizing the critical role played by the S2 binding site in the inactivation process of KcsA. This homo-FRET approach provides complementary information to X-ray crystallography in which the protein conformational dynamics is usually compromised.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Anisotropia , Sítios de Ligação , Cristalografia por Raios X/métodos , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Potássio/metabolismo , Sódio/metabolismo
3.
J Biol Chem ; 292(37): 15552-15560, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778926

RESUMO

The selectivity filter in potassium channels, a main component of the ion permeation pathway, configures a stack of binding sites (sites S1-S4) to which K+ and other cations may bind. Specific ion binding to such sites induces changes in the filter conformation, which play a key role in defining both selectivity and permeation. Here, using the potassium channel KcsA as a model, we contribute new evidence to reinforce this assertion. First, ion binding to KcsA blocked by tetrabutylammonium at the most cytoplasmic site in the selectivity filter (S4) suggests that such a site, when in the nonconductive filter conformation, has a higher affinity for cation binding than the most extracellular S1 site. This filter asymmetry, along with differences in intracellular and extracellular concentrations of K+versus Na+ under physiological conditions, should strengthen selection of the permeant K+ by the channel. Second, we used different K+ concentrations to shift the equilibrium between nonconductive and conductive states of the selectivity filter in which to test competitive binding of Na+ These experiments disclosed a marked decrease in the affinity of Na+ to bind the channel when the conformational equilibrium shifts toward the conductive state. This finding suggested that in addition to the selective binding of K+ and other permeant species over Na+, there is a selective exclusion of nonpermeant species from binding the channel filter, once it reaches a fully conductive conformation. We conclude that selective binding and selective exclusion of permeant and nonpermeant cations, respectively, are important determinants of ion channel selectivity.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Canais de Potássio/metabolismo , Potássio/metabolismo , Streptomyces/metabolismo , Algoritmos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligação Competitiva , Césio/metabolismo , Detergentes/química , Detergentes/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Temperatura Alta/efeitos adversos , Cinética , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/química , Canais de Potássio/genética , Desnaturação Proteica , Estabilidade Proteica , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Rubídio/metabolismo , Sódio/metabolismo , Solubilidade
4.
J Biol Chem ; 290(42): 25745-55, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26336105

RESUMO

There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp(67)-Glu(71)-Asp(80) inactivation triad within the channel structure and its bearing on the selectivity filter.


Assuntos
Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Lipídeos/química , Canais de Potássio/metabolismo , Proteínas/metabolismo , Streptomyces lividans/metabolismo , Proteínas de Bactérias/fisiologia , Bicamadas Lipídicas , Modelos Moleculares , Canais de Potássio/fisiologia , Ligação Proteica
5.
Biochim Biophys Acta ; 1828(2): 193-200, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23022492

RESUMO

In this work, we illustrate the ability of the prokaryotic potassium channel KcsA to assemble into a variety of supramolecular clusters of defined sizes containing the tetrameric KcsA as the repeating unit. Such clusters, particularly the larger ones, are markedly detergent-labile and thus, disassemble readily upon exposure to the detergents commonly used in protein purification or conventional electrophoresis analysis. This is a reversible process, as cluster re-assembly occurs upon detergent removal and without the need of added membrane lipids. Interestingly, the dimeric ensemble between two tetrameric KcsA molecules are quite resistant to detergent disassembly to individual KcsA tetramers and along with the latter, are likely the basic building blocks through which the larger clusters are organized. As to the proteins domains involved in clustering, we have observed disassembly of KcsA clusters by SDS-like alkyl sulfates. As these amphiphiles bind to inter-subunit, "non-annular" sites on the protein, these observations suggest that such sites also mediate channel-channel interactions leading to cluster assembly.


Assuntos
Proteínas de Bactérias/química , Detergentes/farmacologia , Canais de Potássio/química , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/química , Relação Dose-Resposta a Droga , Eletroforese/métodos , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida , Lipídeos/química , Modelos Moleculares , Canais de Potássio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
6.
Biochemistry ; 48(6): 1348-60, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19170609

RESUMO

RYBP (Ring1A and YY1 binding protein) is a zinc finger protein with an essential role during embryonic development, which binds transcriptional factors, Polycomb products, and mediators of apoptosis, suggesting roles in, apparently, unrelated functions. To investigate mechanisms underlying its association with functionally diverse partners, we set out to study its structural properties using a number of biophysical (fluorescence, circular dichroism, Fourier transform infrared, and NMR spectroscopies) and hydrodynamic (analytical ultracentrifugation, DOSY-NMR, and gel filtration chromatography) techniques. We find RYBP to be a noncompact protein with little residual secondary structure, lacking a well-defined tertiary structure. These observations are also supported by theoretical calculations using neural networks and pairwise energy content, suggesting that RYBP is a natively unfolded protein. In addition, structural studies on its binding to the C-terminal region of the Polycomb protein Ring1B or to DNA show conformational changes in the complexed RYBP, consistent with the acquisition of a folded structure. The data provide a structural explanation for RYBP engagement in functionally unrelated pathways by means of its assembly into various macromolecular complexes as an unstructured protein with the ability to acquire a well-structured fold due to its association with different partners.


Assuntos
DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dobramento de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Dicroísmo Circular , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Fluorescência , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Triptofano/metabolismo
7.
J Biol Chem ; 283(26): 18076-85, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18430729

RESUMO

The effects of the inactivating peptide from the eukaryotic Shaker BK(+) channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr(8), which exhibit the strongest STD effects; the C4H in the imidazole ring of His(16); the methyl protons of Val(4), Leu(7), and Leu(10) and the side chain amine protons of one, if not both, the Lys(18) and Lys(19) residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val(4) and Leu(10), whereas His(16) seems similarly affected as before. Conversely, STD effects on Tyr(8) are strongly diminished, and those on Lys(18) and/or Lys(19) are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of (13)C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a beta-hairpin structure when bound to the KcsA channel. Indeed, docking such a beta-hairpin structure into an open pore model for K(+) channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.


Assuntos
Proteínas de Bactérias/química , Epitopos/química , Canais de Potássio/química , Sequência de Aminoácidos , Aminoácidos/química , Eletrofisiologia , Proteínas de Escherichia coli/química , Lisina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Peptídeos/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Biochemistry ; 47(7): 2123-33, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18205389

RESUMO

Moderate concentrations of the alcohol 2,2,2-trifluoroethanol (TFE) cause the coupled unfolding and dissociation into subunits of the homotetrameric potassium channel KcsA, in a process that is partially irreversible when the protein is solubilized in plain dodecyl beta-d-maltoside (DDM) micelles [Barrera et al. (2005) Biochemistry 44, 14344-52]. Here we report that the transition from the folded tetramer to the unfolded monomer becomes completely reversible when KcsA is solubilized in mixed micelles composed of the detergent DDM and the lipids DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and DOPG (1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]). This result suggests that lipids may act as effectors in the tetramerization of KcsA. The observed reversibility allowed the determination of the standard free energy of the folding reaction of KcsA: DeltaG = 30.5 +/- 3.1 kcal x mol-1. We also observed that, prior to the unfolding of the tetramer, the presence of lower TFE concentrations causes the disassembly of supramolecular clusters of KcsA into the individual tetrameric molecules. Within the limits of experimental resolution, this is also a reversible process, but unlike the tetramer to monomer transition from above, the level of clustering is not influenced by the presence of solubilized lipids. These observations suggest a distinct role of the lipids in the different in vitro assembly steps (folding/tetramerization and clustering) of KcsA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Canais de Potássio/metabolismo , Proteínas de Bactérias , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Canais de Potássio/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Espectrometria de Fluorescência , Termodinâmica , Trifluoretanol/química
9.
Biochemistry ; 44(43): 14344-52, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16245951

RESUMO

2,2,2-Trifluoroethanol (TFE) effectively destabilizes the otherwise highly stable tetrameric structure of the potassium channel KcsA, a predominantly alpha-helical membrane protein [Valiyaveetil, F. I., Zhou, Y., and MacKinnon, R. (2002) Biochemistry 41, 10771-10777]. Here, we report that the effects on the protein structure of increasing concentrations of TFE in detergent solution include two successive protein concentration-dependent, cooperative transitions. In the first of such transitions, occurring at lower TFE concentrations, the tetrameric KcsA simultaneously increases the exposure of tryptophan residues to the solvent, partly loses its secondary structure, and dissociates into its constituent subunits. Under these conditions, simple dilution of the TFE permits a highly efficient refolding and tetramerization of the protein in the detergent solution. Moreover, following reconstitution into asolectin giant liposomes, the refolded protein exhibits nativelike potassium channel activity, as assessed by patch-clamp methods. Conversely, the second cooperative transition occurring at higher TFE concentrations results in the irreversible denaturation of the protein. These results are interpreted in terms of a protein and TFE concentration-dependent reversible equilibrium between the folded tetrameric protein and partly unfolded monomeric subunits, in which folding and oligomerization (or unfolding and dissociation in the other direction of the equilibrium process) are seemingly coupled processes. At higher TFE concentrations this is followed by the irreversible conversion of the unfolded monomers into a denatured protein form.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Canais de Potássio/química , Dobramento de Proteína , Trifluoretanol/química , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Desnaturação Proteica , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência , Triptofano/química
10.
Ann N Y Acad Sci ; 957: 284-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12074982

RESUMO

The antioxidant capacity of different types of red and white wines was assessed by different assays. Two assays were used to evaluate the antioxidant capacity in aqueous phase: (1) inhibition of the generation of 2,2'-azinodi(3-etilbencenotiazolin-6-sulfonate) (ABTS)-derived radical; and (2) protection of vitamin E in human plasma. The results indicated that red wines were not all equally effective, and a comparison could be made among different types. The ABTS assay showed that Cabernet Sauvignon wines had the highest antioxidant capacity followed by Malbec wines. Red wines showed a protective capacity of 70-90% in preventing SH-groups oxidation, and, in addition, they were also effective in preventing the oxidative damage in lipid domains (30-97% protection to liposomes, 20-70% to vitamin E). The antioxidant capacity of the white wines was significantly lower, as evaluated by all the assays. Significant correlations were found for phenolics and catechin content with the antioxidant capacity of the studied wines.


Assuntos
Antioxidantes/farmacologia , Vinho , Animais , Argentina , Benzotiazóis , Cátions/antagonistas & inibidores , Bovinos , Radicais Livres/antagonistas & inibidores , Humanos , Lipossomos/metabolismo , Oxirredução/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Ácidos Sulfônicos/metabolismo , Vitamina E/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...